
Building CQRS/ES web applications
in Elixir using Phoenix

Thursday March 23rd, 2017

Presented by Ben Smith

In this talk you will discover how to build applications following domain-driven design, using

the CQRS/ES pattern with Elixir and Phoenix.

I’ll take you through a real-world case study to demonstrate how these principles can be

applied.

https://10consulting.com/

What you'll learn
• Elixir, and some OTP (Open Telecom Platform).

• Command Query Responsibility Segregation and event sourcing (CQRS/ES).

• Implementing these concepts in a real-world case study.

How we'll get there
1. Concepts & building blocks:

• Elixir and OTP.

• CQRS/ES: aggregate roots, commands, events, event handlers, process

managers, read-only projections.

2. Implementation:

• Event store using PostgreSQL for persistance.

• Phoenix web application.

With plenty of code samples and demos along the way.

Before we begin …
• Who has heard of Elixir?

• Who has used Elixir?

• Who has heard of Erlang?

• Who has used Erlang?

• Who has heard of Command Query Responsibility Segregation and event

sourcing?

• Who has experience with CQRS/ES?

My experience with Elixir

August 2015 Phoenix web framework 1.0 released.

Discovered Elixir, began reading about the language.

January 2016 Purchased Programming Elixir book.

Started building first Elixir & Phoenix web app.

October 2016 Full-time Elixir development.

https://startlearningelixir.com/r/programming-elixir/redirect

Erlang
• The term Erlang is used interchangeably with

Erlang/OTP, or OTP, which consists of:

• Erlang runtime system.

• A number of ready-to-use components, mainly

written in Erlang.

• A set of design principles for Erlang programs.

• It was originally a proprietary language within Ericsson, developed by Joe

Armstrong, Robert Virding and Mike Williams in 1986.

• Released as open source in 1998.

Joe Armstrong — "Erlang The Movie"

Why Erlang?
Erlang is well suited to systems that are:

• Distributed.

• Fault-tolerant.

• Soft real-time.

• Highly available, non-stop applications:

• nine nines – 99.9999999% – availability.

• Hot swapping, where code can be changed without stopping a system.

WhatsApp ♥ Erlang
WhatsApp architecture in 2014 when acquired by Facebook for $19 billion.

• Peaked at 2.8 million connections per server (24 CPU, 100GB RAM).

• 32 engineers — one developer supporting 14 million active users.

• 19 billion inbound & 40 billion outbound messages per day.

• More than 70 million Erlang messages per second.

• Erlang has awesome SMP scaling: nearly linear scalability.

http://highscalability.com/blog/2014/3/31/how-whatsapp-grew-to-nearly-500-million-users-11000-cores-an.html

We do not have one webserver handling 2 millions sessions.

We have 2 million webservers handling one session each.

Because we have one webserver per user we can easily make the system fault

tolerant or scalable.

-- Joe Armstrong

”

http://joearms.github.io/2016/03/13/Managing-two-million-webservers.html

Elixir is a dynamic, functional language designed for building scalable and

maintainable applications.

It leverages the Erlang VM, known for running low-latency, distributed and

fault-tolerant systems.

• First appeared in 2011 — six years old.

• Latest major release – 1.4.0 – in January 2017.

”

Elixir's key features
• Shared nothing concurrent programming via message passing.

• Immutable state.

• Emphasis on recursion and higher-order functions instead of side-effect-

based looping.

• Pattern matching.

• Macros and meta-programming.

• Polymorphism via a mechanism called protocols.

• "Let it crash"

Elixir takes full advantage of OTP
• Elixir can call Erlang code, and vice versa, without any conversion cost at all.

• Elixir can use Erlang libraries.

• OTP behaviours:

• GenServer

• Supervisor

• Application

Behaviours provide a module of common code — the wiring and plumbing —

and a list of callbacks you must implement for customisation.

Elixir's promise
• Elixir does not promise:

• That your code will scale horizontally.

• Fault tolerant systems with no effort.

• But promises to give you:

• Tools that you can employ to make it happen.

• Patterns and building blocks of reliability instead.

Elixir's concurrency model
Elixir code runs inside lightweight threads of execution, called processes.

Processes are also used to hold state.

A process in Elixir is not the same as an operating system process. Instead, it

is extremely lightweight in terms of memory and CPU usage.

An Elixir application may have tens, or even hundreds of thousands of

processes running concurrently on the same machine.

A single Elixir process is analogous to the event loop in JavaScript.

Actor model
• An Actor has a mailbox.

• Actors communicate with other Actors by

sending them immutable messages.

• Messages are put into the Actor’s mailbox.

• When an Actor’s mailbox has a message, code

is run with that message as an argument.

This code is called serially.

• When an Actor encounters an error, it dies.

Message passing
Processes are isolated and exchange information via messages:

current_process = self()

spawn a process to send a message
spawn_link(fn ->
 send(current_process, {:message, "hello world"})
end)

block current process until the message is received
receive do
 {:message, message} -> IO.puts(message)
end

... or flush all messages
flush()

Processes encapsulate state
State is held by a process while it runs an infinite receive loop:

defmodule Counter do
 def start(initial_count) do
 loop(initial_count)
 end

 defp loop(count) do
 new_count = receive do
 :increment -> count + 1
 :decrement -> count - 1
 end

 IO.puts(new_count)

 loop(new_count)
 end
end

iex> counter = spawn(Counter, :start, [0])
#PID<0.184.0>
iex> send(counter, :increment)
1
iex> send(counter, :increment)
2
iex> send(counter, :increment)
3
iex> send(counter, :decrement)
2

OTP behaviours
1. GenServer

2. Supervisor

3. Application

GenServer
• Generic client-server OTP behaviour.

• A GenServer is implemented in two parts:

1. Client API

2. Server callbacks

• The client and server run in separate processes.

• The client passes messages back and forth to the server as its functions are

called.

• GenServer is a loop that handles one request per iteration passing along its

updated state.

Example GenServer
defmodule ExampleServer do
 use GenServer

 def start_link do
 GenServer.start_link(ExampleServer, :ok, [])
 end

 # client API
 def put(server, key, value), do: GenServer.cast(server, {:put, key, value})
 def get(server, key), do: GenServer.call(server, {:get, key})

 # OTP GenServer behaviour callbacks
 def init(:ok) do
 {:ok, %{}}
 end

 def handle_cast({:put, key, value}, state) do
 {:noreply, Map.put(state, key, value)}
 end

 def handle_call({:get, key}, _from, state) do
 {:reply, Map.get(state, key), state}
 end
end

GenServer usage
iex> {:ok, pid} = ExampleServer.start_link()
{:ok, #PID<0.118.0>}

iex> ExampleServer.put(pid, :foo, 1)
:ok

iex> ExampleServer.get(pid, :foo)
1

iex> ExampleServer.get(pid, :foo2)
nil

iex> Process.unlink(pid)
true

iex> Process.exit(pid, :kill)
true

iex> Process.alive?(pid)
false

iex> ExampleServer.get(pid, :foo)
** (exit) exited in: GenServer.call(#PID<0.118.0>, {:get, :foo}, 5000)
 ** (EXIT) no process: the process is not alive ...

OTP behaviours
1. GenServer

2. Supervisor

3. Application

Supervision
A supervisor is responsible for starting, stopping, and monitoring its child

processes. The basic idea of a supervisor is that it is to keep its child

processes alive by restarting them when necessary.

• Processes can supervise other processes:

• If a supervised process dies, the supervisor is sent a message.

• If this message isn’t handled, the supervisor dies.

Supervision is key to Erlang – and Elixir's – "let it crash" philosophy.

Example Supervisor
Define child processes to monitor and restart:

import Supervisor.Spec

children = [
 worker(ExampleServer, [], [name: ExampleServer])
]

A supervisor's children can also include other supervisors.

Starting the supervisor will start its children:

{:ok, pid} = Supervisor.start_link(children, strategy: :one_for_one)

Refactor our GenServer to use its module name, not a process identifier.

defmodule ExampleServer do
 use GenServer

 def start_link do
 GenServer.start_link(ExampleServer, :ok, [name: ExampleServer])
 end

 # client API
 def put(key, value), do: GenServer.cast(ExampleServer, {:put, key, value})
 def get(key), do: GenServer.call(ExampleServer, {:get, key})

 # OTP GenServer behaviour callbacks
 def init(:ok) do
 {:ok, %{}}
 end

 def handle_cast({:put, key, value}, state) do
 {:noreply, Map.put(state, key, value)}
 end

 def handle_call({:get, key}, _from, state) do
 {:reply, Map.get(state, key), state}
 end
end

Supervisor in action
We can observe the Erlang VM, including running processes and their state:

iex> :observer.start()
:ok
iex> {:ok, pid} = Supervisor.start_link(children, strategy: :one_for_one)
{:ok, #PID<0.116.0>}
iex> ExampleServer.put(:foo, 1)
:ok
iex> ExampleServer.get(:foo)
1
iex> pid = Process.whereis(ExampleServer)
#PID<0.117.0>
iex> Process.exit(pid, :kill)
true
iex> Process.whereis(ExampleServer)
#PID<0.123.0>
iex> ExampleServer.get(:foo)
nil

Supervisor restart strategies
1. One for one.

2. One for all.

3. Rest for one.

Restart strategies: one for one
When a process dies, restart only the process that failed.

Restart strategies: one for all
When a process dies, kill any remaining supervised processes and restart

them all.

Used whenever processes under a single supervisor heavily depend on each

other to be able to work normally.

Restart strategies: rest for one
When a process dies, kill any processes defined after it and restart them.

Used whenever you have to start processes that depend on each other in a

chain

"Let it crash"
• Elixir – and Erlang – encourage you to code the happy path.

• Runtime errors should be allowed to crash the process.

• Supervisors handle restarting a process:

• "Have you tried turning it off, and back on again?"

• Restarting allows a process to initialise to a known good state.

• Too many process restarts are propagated up the supervision tree.

This leads to a clean separation of issues. We write code that solves

problems and code that fixes problems, but the two are not intertwined.

OTP behaviours
1. GenServer

2. Supervisor

3. Application

Application
• An independent module or group of modules.

• That implements a specific piece of functionality.

• Can be started and stopped independently.

• Is supervised.

• Can be reused in other OTP Applications.

def application do
 [
 mod: {PhoenixExample, []},
 applications: [:phoenix, :phoenix_html, :cowboy, :logger, :gettext, :phoenix_ecto, :postgrex]
]
end

Elixir's multicore advantage
• Elixir has immutable data structures:

• No locks, easy to parallelise.

• BEAM (VM) will run on one OS process:

• One thread – as a scheduler – per CPU core.

• Elixir processes are distributed amongst available CPU cores.

• Can redistribute processes to even load, or reduce CPU core usage.

• Processes running across multiple nodes are no different than when running

on a single node.

• Once started, Elixir (Erlang/OTP) applications are expected to run forever.

Let's dive into some Elixir usage
• Pattern matching.

• Pipe operator.

• Macros.

• Testing.

• Using mix to:

• Scaffold a new application.

• Manage third party dependencies.

Pattern matching using the match
operator

• In Elixir, the = operator is actually called the match operator.

• It can be used to match against simple values, but is more useful for

destructuring complex data types.

iex> a = 1
1
iex> [a, b, c] = [1, 2, 3]
[1, 2, 3]
iex> a
1
iex> b
2
iex> c
3

Case statements
Using pattern matching within a case statement:

def buy_ticket?(age) do
 case age do
 age when age >= 18 -> true
 _ -> false
 end
end

This example could also be written by pattern matching on function

arguments:

def buy_ticket?(age) when age >= 18, do: true
def buy_ticket?(_age), do: false

Pipe operator
The pipe operator |> passes the result of an expression as the first

parameter of another expression.

foo(bar(baz(new_function("initial value"))))

Becomes:

"initial value"
|> new_function()
|> baz()
|> bar()
|> foo()

Macros and testing
Elixir’s built-in unit testing framework, ExUnit, takes advantage of macros to

provide great error messages when test assertions fail.

defmodule ListTest do
 use ExUnit.Case, async: true

 test "can compare two lists" do
 assert [1, 2, 3] == [1, 3]
 end
end

The async: true option allows tests to run in parallel, using as many

CPU cores as possible.

Unit test execution
Running the failing test produces a descriptive error:

$ mix test

1) test can compare two lists (ListTest)
 test/list_test.exs:13
 Assertion with == failed
 code: [1, 2, 3] == [1, 3]
 left: [1, 2, 3]
 right: [1, 3]

The equality comparison failed due to differing left and right hand side

values.

Using mix to create an Elixir app
$ mix new example --sup --module Example --app example
* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/example.ex
* creating lib/example/application.ex
* creating test
* creating test/test_helper.exs
* creating test/example_test.exs

Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

 cd example
 mix test

Run "mix help" for more commands.

Let's have a peek inside an Elixir app …
• Environment specific configuration: config.exs .

• Application supervisor defined, by using the --sup flag to mix.

• Barebones initial app module: Example .

• Testing included by default.

• Application related mix settings: mix.exs .

Managing dependencies
• Packages can be sourced from:

• Erlang's package manager: Hex.

• Git repository, or GitHub.

• Local path.

• An umbrella application.

• Third party dependencies defined in mix.exs :

defp deps do
 [
 {:ecto, "~> 2.1"},
 {:local_dependency, path: "~/src/local_dependency"},
]
end

https://hex.pm/

Fetching dependencies
Once the dependencies have been listed in mix.exs , you run mix

deps.get :

$ mix deps.get
Running dependency resolution...
Dependency resolution completed:
 decimal 1.3.1
 ecto 2.1.3
 poolboy 1.5.1
* Getting ecto (Hex package)
 Checking package (https://repo.hex.pm/tarballs/ecto-2.1.3.tar)
 Fetched package

Then compile them using mix deps.compile .

Elixir development
• Install using Homebrew (on Mac).

• Elixir's interactive shell: iex .

• Hex package manager.

• Atom text editor:

• Elixir language support for Atom.

• Atom Elixir package.

https://brew.sh/
https://hex.pm/
https://atom.io/
https://atom.io/packages/language-elixir
https://atom.io/packages/atom-elixir

A productive web framework that does not compromise speed and

maintainability.

• Written in Elixir.

• Implements the server-side model-view-controller (MVC) pattern.

• Channels for soft-realtime features.

• Pre-compiled view templates for blazing speed.

• Uses the Erlang HTTP server, Cowboy.

• Response times measured in microseconds (μs).

”

http://www.phoenixframework.org/

Phoenix vs another web framework

Comparison of technologies used in two real-life web servers.

Command Query
Responsibility Segregation
and event sourcing

CQRS/ES
At it’s simplest CQRS is the separation of commands from queries.

• Commands are used to mutate state in a write model.

• Queries are used to retrieve a value from a read model.

The read and write models are different logical models.

They may also be separated physically by using a different database or

storage mechanism.

Commands
• Commands are used to instruct an application to do something.

• They are named in the imperative:

• Register account

• Transfer funds

• Mark fraudulent activity

Domain events
• Domain events indicate something of importance has occurred within a

domain model.

• They are named in the past tense:

• Account registered

• Funds transferred

• Fraudulent activity detected

Queries
• Domain events from the write model are used to build the read model.

• The read model is optimised for querying, using whatever technology is

most appropriate:

• Relational database

• In-memory store

• NoSQL database

• Full-text search index

Event sourcing
• Application state changes are modelled as a stream of domain events:

• An aggregate's current state is built by replaying its domain events:

f(state, event) => state

Event streams
• Domain events are persisted in order – as a logical stream – for each

aggregate.

• The event stream is the canonical source of truth.

• It is a perfect audit log.

• All other state in the system may be rebuilt from these events:

• Read models are projections of the event stream.

• You can rebuild the read model by replaying every event from the

beginning of time.

Why choose CQRS/ES?
• Domain events describe your system activity over time using a rich, domain-

specific language.

• They are an immutable source of truth for the system.

• Auditing.

• They support temporal queries, and after the fact data analysis of events.

• A separate logical read model allows optimised and highly specialised query

models to be built.

• Bypass the object-relational (ORM) impedance mismatch.

Benefits of using CQRS
• The processing of commands and queries is asymmetrical, you can:

• Scale the read and write models independently.

• Dedicate the appropriate number of servers to each side.

• Events and their schema provide the ideal integration point for other

systems.

• They allow migration of read-only data between persistence technologies by

replaying and projecting all events.

Costs of using CQRS
• Events also provide a history of your poor design decisions.

• Events are immutable.

• It's an alternative – and less common – approach to building applications

than basic CRUD.

• It demands a richer understanding of the domain being modelled.

• CQRS adds risky complexity.

• Eventual consistency.

Recipe for building a CQRS/ES
application in Elixir

• A domain model containing our aggregates, commands, and events.

• Hosting of an aggregate root and a way to send it commands.

• An event store to persist the domain events.

• Read model store for querying.

• Event handlers to build and update the read model.

• A web front-end UI to display read model query data, and to dispatch

commands to the write model.

High-level application lifecycle
1. Read model queried to display data: UI, API.

2. Command built from a user request: Form POST data, API.

3. Command is validated and authorised.

4. Aggregate is located: its state rebuilt from previous events, or created from

scratch.

5. Command passed to aggregate, business logic is validated.

6. Domain events are appended to the aggregate's event stream.

7. Its internal state is updated by applying these events.

8. Event handlers are notified of the events: read-model updated in response.

An aggregate in domain-driven design
• Defines a consistency boundary for transactions and concurrency.

• Aggregates should also be viewed from the perspective of being a

"conceptual whole".

• Are used to enforce invariants in a domain model.

• Naturally fit within Elixir's actor concurrency model:

• GenServer enforces serialised access.

• Communicate by sending messages: commands and events.

An event-sourced aggregate
Must adhere to these rules:

1. Each public function must accept a command and return any resultant

domain events, or raise an error.

2. Its internal state may only be modified by applying a domain event to its

current state.

3. Its internal state can be rebuilt from an initial empty state by replaying all

domain events in the order they were raised.

Let's build an aggregate in Elixir
defmodule ExampleAggregate do
 # aggregate's state
 defstruct [
 uuid: nil,
 name: nil,
]

 # public command API
 def create(%ExampleAggregate{}, uuid, name) do
 %CreatedEvent{
 uuid: uuid,
 name: name,
 }
 end

 # state mutator
 def apply(%ExampleAggregate{} = aggregate, %CreatedEvent{uuid: uuid, name: name}) do
 %ExampleAggregate{aggregate |
 uuid: uuid,
 name: name,
 }
 end
end

A bank account example
This example provides three public API functions:

1. To open an account: open_account/2 .

2. To deposit money: deposit/2 .

3. To withdraw money: withdraw/2 .

A guard clause is used to prevent the account from being opened with an

invalid initial balance.

This protects the aggregate from violating the business rule that an account

must be opened with a positive balance.

Using the aggregate root
Initial empty account state:

account = %BankAccount{}

Opening the account returns an account opened event:

account_opened = BankAccount.open_account(account, %BankAccount.Commands.OpenAccount{
 account_number: "ACC123",
 initial_balance: 100
})

Mutate the bank account state by applying the opened event:

account = BankAccount.apply(account, account_opened)

Aggregates in Elixir
I've shown examples of aggregates implemented using pure functions.

The function always evaluates the same result value given the same

argument value.

• A pure function is highly testable.

• You will focus on behaviour rather than state.

• Decouple your domain from the framework's domain.

• Build your application separately first, and layer the external interface on top.

Unit testing an aggregate
defmodule BankAccountTest do
 use ExUnit.Case, async: true

 alias BankAccount.Commands.OpenAccount
 alias BankAccount.Events.BankAccountOpened

 describe "opening an account with a valid initial balance"
 test "should be opened" do
 account = %BankAccount{}
 open_account = %OpenAccount{
 account_number: "ACC123",
 initial_balance: 100,
 }

 account_opened = BankAccount.open_account(account, open_account)

 assert account_opened == %BankAccountOpened{
 account_number: "ACC123",
 initial_balance: 100,
 }
 end
 end
end

Unit testing a CQRS/ES application
• Create factory functions for commands and events.

• Use these to direct and verify aggregate behaviour.

• Events can also be used to test: event handlers; read-model projections;

inter-aggregate communication using process managers.

ExMachina example:

defmodule Factory do
 use ExMachina

 def open_account_factory do
 %BankAccount.Commands.OpenAccount{
 account_number: "ACC123",
 initial_balance: 100,
 }
 end
end

https://github.com/thoughtbot/ex_machina

Hosting an aggregate in a GenServer
• One Elixir GenServer process per aggregate instance:

• Serialises access to an aggregate instance.

• Built-in support for terminating idle processes.

• Registry used to track active aggregates:

• Maps an aggregate identity to a process id (PID).

• Handles side effects from pure aggregate functions.

• Commands are routed to an instance.

Executing a command
1. Rebuild an aggregate's state from its events.

2. Execute the aggregate function, providing the state and command.

3. Update the aggregate state by applying the returned event(s).

4. Append the events to storage.

5. An error will terminate the process:

• Caller will receive an {:error, reason} tagged tuple.

• Aggregate state rebuilt from events in storage on next command.

Command dispatch
• Synchronous command dispatch:

• Receiving an :ok response indicates the command succeeded.

• Middleware can be used to validate, audit commands.

• Commands routed to a process hosting an aggregate instance:

defmodule BankRouter do
 use Commanded.Commands.Router

 dispatch OpenAccount,
 to: OpenAccountHandler,
 aggregate: BankAccount,
 identity: :account_number
end

:ok = BankRouter.dispatch(%OpenAccount{account_number: "ACC123", initial_balance: 1_000})

Process managers
• A process manager is responsible for coordinating one or more aggregates.

• It handles events and may dispatch commands in response.

• Each process manager has state used to track which aggregate roots are

being orchestrated.

• They are vital for inter-aggregate communication, coordination, and long-

running business processes.

• Typically, you would use a process manager to route messages between

aggregates within a bounded context.

Before I forget …
It is worth remembering that domain events are the contracts of our domain

model.

They are recorded within the immutable event stream of the aggregate.

A recorded domain event cannot be changed; history cannot be altered.

I'll show you how to migrate, modify, and retire domain events — in effect

rewriting history — later.

An Elixir CQRS/ES case study
Let's explore a real-world example of implementing these concepts in a

Phoenix-based web app.

Strava
• Strava is a very popular social network for athletes (cyclists and runners).

• Who record their rides and runs, and upload them to Strava.

• Strava users create segments from sections of their routes.

• Athletes can compare themselves against other Strava users who cycle or

run along the same routes.

http://strava.com/

Segment Challenge
• Segment Challenge allows an athlete to create a competition for a cycling

club and its members.

• A different Strava segment is selected each month to compete on.

• Club members' attempts at each segment are fetched from Strava's API.

• Their efforts are ranked by time on a leaderboard.

• Replaces manual tracking of each athlete's segment efforts in a

spreadsheet.

• The site is entirely self-service: any Strava member can host a challenge for

their own cycling club.

https://segmentchallenge.com/

Journey to CQRS/ES in Elixir
• Segment Challenge began life as a vanilla Phoenix web application.

• Fell into trap of database schema == domain model.

• I wanted to add an activity feed …

• Seems like a good fit for an event sourced system.

• So I stopped building the site and:

• Built an event store in Elixir using PostgreSQL: eventstore

• Wrote a CQRS/ES Elixir library: commanded

• Rewrote the entire Segment Challenge application.

• 9 months later, added activity feed using a read-model projection.

https://github.com/slashdotdash/eventstore
https://github.com/slashdotdash/commanded

Building an event store
• Uses PostgreSQL for persistence.

• Only requires four tables:

1. events

2. snapshots

3. streams

4. subscriptions

• Events are serialized to JSON, but stored as binary data.

• Subscriptions use a hybrid push/pull notification model.

• In-memory pub/sub; read from storage on catch-up or new subscriber.

Event store API
defmodule EventStore do
 @doc """
 Append one or more events to a stream atomically.
 """
 def append_to_stream(stream_uuid, expected_version, events)

 @doc """
 Reads the requested number of events from the given stream,
 in the order in which they were originally written.
 """
 def read_stream_forward(stream_uuid, start_version \\ 0, count \\ 1_000)

 @doc """
 Subscriber will be notified of each batch of events persisted to a single stream.
 """
 def subscribe_to_stream(stream_uuid, subscription_name, subscriber, start_from \\ :origin)

 @doc """
 Subscriber will be notified of every event persisted to any stream.
 """
 def subscribe_to_all_streams(subscription_name, subscriber, start_from \\ :origin)
end

Event store single writer
• A single Elixir process is used to append events to the database.

• Assigns incrementing identifier to each persisted event.

• Guarantee consistent ordering of events within the event store.

Architecting an Elixir application
• An OTP application is one or more modules that implement a specific piece

of functionality.

• Analogous to a microservice.

• Elixir provides support for internal dependencies specific to a project by

creating an umbrella project.

• Umbrella projects allow you to create one project that hosts many OTP

applications while keeping all of them in a single source code repository.

Elixir umbrella application
• authorisation - Policies to authorise command dispatch.

• challenges - Core domain model, command router, process managers,

read model projections, queries, and periodic tasks.

• commands - Modules for each command.

• events - Modules for each domain event.

• infrastructure - Serialization and command middleware.

• projections - Ecto repository and database migrations to build the read

model database schema.

• web - Phoenix web front-end.

Let's take a look at the implementation
• Aggregate root: Challenge

• Commands and events.

• Unit and integration testing.

• Routing commands: Router

• Event handling: StageEventHandler .

• Process manager: ChallengeCompetitorProcessManager

• Read model:

• Projections.

• Querying.

Challenge aggregate root
• Public command functions:

• Accept challenge state and a command.

• Return zero, one, or many domain events in response.

• Aggregate protects itself against commands that would cause an invariant

to be broken.

• Pattern matching is used to validate the state of the aggregate.

• Every domain event returned by the aggregate has a corresponding

apply/2 function to mutate its state.

Commands & events
• Defining a command with validation: CreateChallenge

• An Event: ChallengeCreated

• Decoding an event struct from JSON using a protocol implementation.

• Used when custom deserialisation is required.

Unit & integration testing
• Unit testing an aggregate: ChallengeTest

• Integration testing a use case: HostChallengeTest

Tag individual tests to allow specific test runs:

mix test --only unit
mix test --only integration
mix test --only wip

Use mix test.watch to run tests each time you save a file:

mix test.watch --only " wip"

https://github.com/lpil/mix-test.watch

Stage event handler
• Used as a background worker.

• Fetches data from the Strava API.

• Dispatches command to an aggregate with retrieved data.

• Supervised to handle restarting on failure.

Challenge competitor process
manager

• Used to track atheletes who are competiting in a challenge.

• Records which challenges are being hosted by a club.

• Adds, or removes, members when they join or leave a club.

• Events are routed to an instance of the process manager using the

interested?/1 function.

Read model
• Projection: ChallengeProjection

• Uses Ecto, a database wrapper and query language for Elixir.

• Projections are specialised event handlers.

• Supervision: Projections.Supervisor

• Query: ChallengesByStatusQuery

https://github.com/elixir-ecto/ecto

Phoenix web framework integration
• Commands:

• Construction: CreateChallengeBuilder .

• Dispatch: CommandController .

• Validation middleware: Validation.Middleware .

• Authorisation: Authorisation .

• Querying the read model:

• Plug request pipeline: LoadChallengeBySlug .

• Render query: ChallengeController .

Deployment
• Build a release using distillery.

• Deploy using edeliver.

mix edeliver build release --skip-mix-clean
mix edeliver deploy release to production
ssh edeliver@segmentchallenge.com 'sudo /bin/systemctl restart segment_challenge'

• Erlang releases must be built on a remote host that is a similar architecture

to the production machines.

• Release contains the full Erlang runtime system, all dependencies, the Elixir

runtime, and your Elixir application in a standalone embedded node.

https://github.com/bitwalker/distillery
https://github.com/boldpoker/edeliver

Production monitoring
• Command auditing middleware.

• Open source command dispatching middleware.

• Records every dispatched command to the configured database

storage.

• Includes whether the command was successfully handled, or any error.

• Monitor events & subscriptions in the event store.

• Use Prometheus to record and Grafana to display key metrics: Erlang,

Phoenix controller actions, Ecto queries.

https://github.com/slashdotdash/commanded-audit-middleware
https://prometheus.io/
https://grafana.com/

Domain event migration strategy
1. Multiple versions: RegisterAccountV1 , RegisterAccountV2

2. Upcasting: single event version, upgrade old events on read.

3. Lazy transformation: upcast the events on read, and persist the modified

event.

4. In place transformation: background job to edit events in the database.

5. Copy & transfrom: migrate an event store into a new database, altering

events as required.

Greg Young has published: Versioning in an Event Sourced System.

https://leanpub.com/esversioning

Copy & transform
Copy and transformation transforms every event to a new store. In this

technique the old event store stays intact, and a new store is created instead.”

Event store migration
• Noticed large number of similar events in production, wanted to combine

them into single event.

• Created an EventStore migrator:

• Copies an event store PostgreSQL database from a source to a target.

• You can transform, remove, aggregate, and alter the serialization format

of the events.

https://github.com/slashdotdash/eventstore-migrator

Remove an event
Uses Elixir's standard Stream module to exclude a particular event:

EventStore.Migrator.migrate(fn stream ->
 Stream.reject(
 stream,
 fn (event_data) -> event_data.event_type == "UnwantedEvent" end
)
end)

Upgrade an event
Using pattern matching to migrate a specific type of event:

defmodule OriginalEvent, do: defstruct [uuid: nil]
defmodule UpgradedEvent, do: defstruct [uuid: nil, additional: nil]

EventStore.Migrator.migrate(fn stream ->
 Stream.map(
 stream,
 fn (event) ->
 case event.data do
 %OriginalEvent{uuid: uuid} ->
 %EventStore.RecordedEvent{event |
 event_type: "UpgradedEvent",
 data: %UpgradedEvent{uuid: uuid, additional: "upgraded #{uuid}"},
 }
 _ -> event
 end
 end
)
end)

Aggregate events
defmodule SingleEvent, do: defstruct [uuid: nil, group: nil]
defmodule AggregatedEvent, do: defstruct [uuids: [], group: nil]

aggregate multiple single events for the same group into one aggregated event
defp aggregate([%{data: %SingleEvent{}}] = events), do: events
defp aggregate([%{data: %SingleEvent{group: group}} = source | _] = events) do
 [
 %EventStore.RecordedEvent{source |
 data: %AggregatedEvent{
 uuids: Enum.map(events, fn event -> event.data.uuid end),
 group: group,
 },
 event_type: "AggregatedEvent",
 },
]
end
defp aggregate(events), do: events

EventStore.Migrator.migrate(fn stream ->
 stream
 |> Stream.chunk_by(fn event -> {event.stream_id, event.event_type} end)
 |> Stream.map(fn events -> aggregate(events) end)
 |> Stream.flat_map(fn events -> events end)
end)

Live queries
• Use Phoenix channels — WebSockets, or long polling — to create a

bidirectional client-server connection.

• Client subscribes to interested queries: a read model projection.

• Publish a notification when the read model projection is updated in response

to an event.

• Subscribed clients are notified, and can refresh their query.

Lessons learnt
• Events are the immutable contracts of your application:

• Hard – but not impossible – to change once deployed to production.

• Keep event payloads succinct.

• Read model can be rebuilt easily:

• Assuming the underlying events contain the data you need.

• Requires building a task-based UI.

• Inter-aggregate communication – using process managers or event handlers

– adds complexity.

Questions?

Thank you
• Ben Smith

ben@10consulting.com

• https://10consulting.com/

• Browse these slides & read more about Elixir and CQRS/ES.

• Subscribe to my CQRS/ES and Elixir mailing list.

• GitHub open source projects:

• eventstore

• commanded

• Start learning Elixir (startlearningelixir.com).

mailto:ben@10consulting.com
https://10consulting.com/
https://github.com/slashdotdash/eventstore
https://github.com/slashdotdash/commanded
https://startlearningelixir.com/

