


What is domain-driven design?
Placing the project's primary focus on the core domain and domain logic

Basing complex designs on a model of the domain

Initiating a creative collaboration between technical and domain experts to

iteratively refine a conceptual model that addresses particular domain

problems

•

•

•



Problem space

Domain
Business problem to be

addressed

Sub-

domain
Smaller part of the domain

Solution space

Domain

model

Abstraction of a

business problem

Bounded

context

Delimits the domain

model

 

The goal of a domain-driven design is an alignment between the domain and

the software.



How do we identify subdomains?
Business capability:

Insurance — underwriting, claims, sales & marketing

Organisational structure:

Insurance products — home, motor, life, travel

Hospital departments — GP, A&E, paediatrics, social care

Organisational communication structures (Conway's Law)

•

•

•

•

•

•



Types of subdomains
Core domain

Supporting subdomain

Generic subdomain

1.

2.

3.



Core domain
Strategic investment in a single, well-defined domain model

High value and priority

The company's secret sauce to distinguish it from competitors

•

•

•



Supporting subdomain
Custom development — no off-the-shelf solution

Consider outsourcing development

•

•



Generic subdomain
Purchase off-the-shelf solution

Outsource development

Examples:

Accounting

CRM

Identity / authentication

•

•

•

•

•

•





Domain-driven comprises …
Strategic design:

Ubiquitous language

Bounded context

Context map

Continuous integration

Tactical design:

Entity

Value object

Aggregate

Domain event

Service

Repository

Factory

1.

•

•

•

•

2.

•

•

•

•

•

•

•





Strategic design



Ubiquitous language
A language used by all team members

What is a Policy?

Underwriting context

Claims context

Marketing & sales context

A domain specific term can have multiple meanings. 

Understanding the meaning of the word is dependent upon the context.

•

•

•

•

•



Bounded context
Semantic contextual

boundary for a model

Ubiquitous language is

consistent within a bounded

context

Separate software artifacts

for each bounded context

Keep the model strictly

consistent within these

bounds

•

•

•

•



Context map
Define relationship and translation between bounded contexts (and

ubiquitous languages)

Kinds of mappings:

Partnership Shared kernel

Customer-supplier Conformist

Anticorruption layer Open host service

Published language Separate ways

•

•

• •

• •

• •

• •



Partnership

Each team responsible for one bounded context

Aligned with a dependent set of goals

Two teams will succeed or fail together

Challenging relationship to maintain due to high synchronisation &

committment

•

•

•

•



Shared kernel

Teams share a small but common model

Difficult to conceive and maintain due to aggreement on what is required

•

•



Customer-supplier

Supplier is upstream and customer is downstream

Supplier provides what the customer needs (but determines what & when)

Typical relationship between teams witin an organisation

•

•

•



Conformist

As customer-supplier, except upstream team has no motivation to support

the downstream team

Downstream team cannot aford to translate the ubiquitous language, so

conforms to upstream model as is

•

•



Anticorruption layer

Most defensive mapping relationship

Donstream team creates a translation layer between the upstream's model

and its own

Provides isolation between contexts, but translation costs may be too high

•

•

•



Open host service

Define an interface or protocol that gives access to your bounded context

"Open" protocol to allow anyone to integrate with relative ease

Well documented service API

Translation often not required by consumers

•

•

•

•



Published language

Well-documented information exchange language

Enables simple consumption and translation by any number of consumers

Published language defined by a schema (e.g. XML Schema, JSON Schema)

or wire format (e.g. Protobuf)

•

•

•



Separate ways
Integration between contexts not worth the effort

Implement your own specialised solution internally — don't attempt to

integrate

•

•





Tactical design



Invoice

Line itemLine itemLine itemBilling
address

Customer

Aggregate

Aggregate root

EntityValue object

Aggregate

Aggregate root

Aggregate, root, & entity



Entity
Models an individual thing

Has a unique identity

Is mutable — its state changes over time

Examples:

Invoice

Line item

Customer

•

•

•

•

•

•

•



Value object
Models just a value

Doesn't have a unique identity

Is immutable

Equivalence is determined by its attributes

Examples:

Address

Money

•

•

•

•

•

•

•



Aggregate
Composed of one or more entities and value objects

Forms a transactional consistency boundary

One entity is called the aggregate root:

Owns all other elements clustered inside it

Access to the aggregate must go through the root entity

Examples:

Invoice

Customer

•

•

•

•

•

•

•

•



Invoice

Line itemLine itemLine itemBilling
address

Customer

Aggregate

Aggregate root

EntityValue object

Aggregate

Aggregate root

Transaction

Aggregate enforces

transactional consistency

Business invariants must be

protected within the

boundary

Must be stored in a whole

and valid state

Allows concurrent

transactions for different

aggregate instances

•

•

•

•



Four rules of aggregate design
Protect business invariants inside aggregate boundaries

Design small aggregates

Reference other aggregates by identity only

Update referenced aggregate using eventual consistency

1.

2.

3.

4.



Domain event
Record of some business-significant occurrence in a bounded context

Immutable facts

Named in the past tense using the ubiquitous language

Can be used for inter-service messaging

Examples:

CustomerBilled

InvoicePaid

•

•

•

•

•

•

•



Service
Contains domain operations that don't belong to an entity or value object

Is stateless

Examples:

Price calculation

Currency conversion

•

•

•

•

•



Repository
Retrieve domain objects (aggregates) from storage•



Factory
Create domain objects•







Further reading
Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric

Evans

Domain-Driven Design Distilled by Vaughn Vernon

Implementing Domain-Driven Design by Vaughn Vernon

Domain Driven Design Quickly (free download)

•

•

•

•

https://www.amazon.co.uk/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.informit.com/store/domain-driven-design-distilled-9780134434421
http://www.informit.com/store/implementing-domain-driven-design-9780321834577
https://www.infoq.com/minibooks/domain-driven-design-quickly

